On a method of estimating parameters in non-negative ARMA models
نویسنده
چکیده
The purpose of this paper is to introduce a method of estimating parameters in nonnegative ARMA processes. The method is a generalization of the procedures which were derived for autoregressive and moving-average processes. The estimates are constructed in the form of minima of certain fractions or some functions of these minima. A theorem concerning the strong consistence of these estimates is proved and its applications to the models ARMA(1,1), ARMA(2,1) and ARMA(p,l), p > 2 are demonstrated.
منابع مشابه
A Cumulant-based stock market volatility modeling – Evidence from the international stock markets
The pourpose of this paper is to propose the Stock Market (SM) volatility estimation method based on the Higher Order Cumulant (HOC) function, and to apply it to the cases when stock market returns have a non Gaussian distribution and/or when a distribution of SM innovations is unknown. The HOC functions of the third and fourth order are used not only as a means for non Gaussian model testing b...
متن کاملDeveloping Fuzzy Models for Estimating the Quality of VoIP
This paper presents a novel method for modeling the one-way quality prediction of VoIP, non-intrusively. Intrusive measures of voice quality suffer from common deficiency that is the need of reference signal for evaluating the quality of voice. Owing to this lack, a great deal of effort has been recently devoted for modeling voice quality prediction non-intrusively according to quality degradat...
متن کاملStatistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کاملEstimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models
A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...
متن کاملA Note on Non-negative Arma Processes
Recently, there are much works on developing models suitable for analyzing the volatility of a discrete-time process. Within the framework of Auto-Regressive Moving-Average (ARMA) processes, we derive a necessary and sufficient condition for the kernel to be non-negative. This condition is in terms of the generating function of the ARMA kernel which has a simple form. We discuss some useful con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 32 شماره
صفحات -
تاریخ انتشار 1996